Adjacency‐based, non‐intrusive reduced‐order modeling for fluid‐structure interactions

Abstract: Non‐intrusive model reduction is a promising solution to system dynamics prediction, especially in cases where data are collected from experimental campaigns or proprietary software simulations. In this work, we present a method for non‐intrusive model reduction applied to Fluid‐Structure Interaction (FSI) problems. The approach is based on the a priori known sparsity of the full‐order system operators, which is dictated by grid adjacency information. In order to enforce this type of sparsity, we solve a “local”, regularized least‐squares problem for each degree of freedom on a grid, considering only the training data from adjacent degrees of freedom (DoFs), thus making computation and storage of the inferred full‐order operators feasible. After constructing the non‐intrusive, sparse full‐order model (FOM), Proper Orthogonal Decomposition (POD) is used for its projection to a reduced dimension subspace and thus the construction of a reduced‐order model (ROM). The methodology is applied to the challenging Hron‐Turek benchmark FSI3, for Re = 200. A physics‐informed, non‐intrusive ROM is constructed to predict the two‐way coupled dynamics of a solid with a deformable, slender tail, subject to an incompressible, laminar flow. Results considering the accuracy and predictive capabilities of the inferred reduced models are discussed.

Standort
Deutsche Nationalbibliothek Frankfurt am Main
Umfang
Online-Ressource
Sprache
Englisch

Erschienen in
Adjacency‐based, non‐intrusive reduced‐order modeling for fluid‐structure interactions ; day:22 ; month:09 ; year:2023 ; extent:8
Proceedings in applied mathematics and mechanics ; (22.09.2023) (gesamt 8)

Urheber
Gkimisis, Leonidas
Richter, Thomas
Benner, Peter

DOI
10.1002/pamm.202300047
URN
urn:nbn:de:101:1-2023092215171736497562
Rechteinformation
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Letzte Aktualisierung
14.08.2025, 10:53 MESZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Beteiligte

Ähnliche Objekte (12)