Arbeitspapier

Partial identification using random set theory

This paper illustrates how the use of random set theory can benefit partial identification analysis. We revisit the origins of Manski's work in partial identification (e.g., Manski (1989, 1990)), focusing our discussion on identification of probability distributions and conditional expectations in the presence of selectively observed data, statistical independence and mean independence assumptions, and shape restrictions. We show that the use of the Choquet capacity functional and of the Aumann expectation of a properly defined random set can simplify and extend previous results in the literature. We pay special attention to explaining how the relevant random set needs to be constructed, depending on the econometric framework at hand. We also discuss limitations in the applicability of specific tools of random set theory to partial identification analysis.

Language
Englisch

Bibliographic citation
Series: cemmap working paper ; No. CWP40/10

Classification
Wirtschaft

Event
Geistige Schöpfung
(who)
Beresteanu, Arie
Molchanov, Ilya
Molinari, Francesca
Event
Veröffentlichung
(who)
Centre for Microdata Methods and Practice (cemmap)
(where)
London
(when)
2010

DOI
doi:10.1920/wp.cem.2010.4010
Handle
Last update
10.03.2025, 11:45 AM CET

Data provider

This object is provided by:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.

Object type

  • Arbeitspapier

Associated

  • Beresteanu, Arie
  • Molchanov, Ilya
  • Molinari, Francesca
  • Centre for Microdata Methods and Practice (cemmap)

Time of origin

  • 2010

Other Objects (12)