Arbeitspapier

Forecasting with a noncausal VAR model

We propose simulation-based forecasting methods for the noncausal vector autoregressive model proposed by Lanne and Saikkonen (2012). Simulation or numerical methods are required because the prediction problem is generally nonlinear and, therefore, its analytical solution is not available. It turns out that different special cases of the model call for different simulation procedures. Simulation experiments demonstrate that gains in forecasting accuracy are achieved by using the correct noncausal VAR model instead of its conventional causal counterpart. In an empirical application, a noncausal VAR model comprised of U.S. inflation and marginal cost turns out superior to the bestfitting conventional causal VAR model in forecasting inflation.

ISBN
978-952-462-828-0
Language
Englisch

Bibliographic citation
Series: Bank of Finland Research Discussion Papers ; No. 33/2012

Classification
Wirtschaft
Multiple or Simultaneous Equation Models: Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
Forecasting Models; Simulation Methods
Subject
Noncausal vector autoregression
forecasting
simulation
importance sampling
inflation

Event
Geistige Schöpfung
(who)
Nyberg, Henri
Saikkonen, Pentti
Event
Veröffentlichung
(who)
Bank of Finland
(where)
Helsinki
(when)
2012

Handle
Last update
10.03.2025, 11:42 AM CET

Data provider

This object is provided by:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.

Object type

  • Arbeitspapier

Associated

  • Nyberg, Henri
  • Saikkonen, Pentti
  • Bank of Finland

Time of origin

  • 2012

Other Objects (12)