Arbeitspapier
On Itô's formula for multidimensional Brownian motion
Consider a d-dimensional Brownian motion X (Xl, ... ,Xd ) and a function F which belongs locally to the Sobolev space W 1,2. We prove an extension of Ito's formula where the usual second order terms are replaced by the quadratic covariations [fk(X), Xkj involving the weak first partial derivatives fk of F. In particular we show that for any locally square-integrable function f the quadratic covariations [f(X), Xkj exist as limits in probability for any starting point, except for some polar set. The proof is based on new approximation results for forward and backward stochastic integrals.
- Sprache
-
Englisch
- Erschienen in
-
Series: SFB 373 Discussion Paper ; No. 2001,90
- Klassifikation
-
Wirtschaft
- Thema
-
Ito's formula
Brownian motion
stochastic integrals
quadratic covariation
Dirichlet spaces
polar sets
- Ereignis
-
Geistige Schöpfung
- (wer)
-
Föllmer, Hans
Protter, Philip E.
- Ereignis
-
Veröffentlichung
- (wer)
-
Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes
- (wo)
-
Berlin
- (wann)
-
2001
- Handle
- URN
-
urn:nbn:de:kobv:11-10051072
- Letzte Aktualisierung
-
10.03.2025, 11:41 MEZ
Datenpartner
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Objekttyp
- Arbeitspapier
Beteiligte
- Föllmer, Hans
- Protter, Philip E.
- Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes
Entstanden
- 2001