Arbeitspapier
On Itô's formula for multidimensional Brownian motion
Consider a d-dimensional Brownian motion X (Xl, ... ,Xd ) and a function F which belongs locally to the Sobolev space W 1,2. We prove an extension of Ito's formula where the usual second order terms are replaced by the quadratic covariations [fk(X), Xkj involving the weak first partial derivatives fk of F. In particular we show that for any locally square-integrable function f the quadratic covariations [f(X), Xkj exist as limits in probability for any starting point, except for some polar set. The proof is based on new approximation results for forward and backward stochastic integrals.
- Language
-
Englisch
- Bibliographic citation
-
Series: SFB 373 Discussion Paper ; No. 2001,90
- Classification
-
Wirtschaft
- Subject
-
Ito's formula
Brownian motion
stochastic integrals
quadratic covariation
Dirichlet spaces
polar sets
- Event
-
Geistige Schöpfung
- (who)
-
Föllmer, Hans
Protter, Philip E.
- Event
-
Veröffentlichung
- (who)
-
Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes
- (where)
-
Berlin
- (when)
-
2001
- Handle
- URN
-
urn:nbn:de:kobv:11-10051072
- Last update
-
10.03.2025, 11:41 AM CET
Data provider
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.
Object type
- Arbeitspapier
Associated
- Föllmer, Hans
- Protter, Philip E.
- Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes
Time of origin
- 2001