Galaxy-ML : : an accessible, reproducible, and scalable machine learning toolkit for biomedicine

Abstract: Supervised machine learning is an essential but difficult to use approach in biomedical data analysis. The Galaxy-ML toolkit (https://galaxyproject.org/community/machine-learning/) makes supervised machine learning more accessible to biomedical scientists by enabling them to perform end-to-end reproducible machine learning analyses at large scale using only a web browser. Galaxy-ML extends Galaxy (https://galaxyproject.org), a biomedical computational workbench used by tens of thousands of scientists across the world, with a suite of tools for all aspects of supervised machine learning

Standort
Deutsche Nationalbibliothek Frankfurt am Main
Umfang
Online-Ressource
Ausgabe
Version 2
Sprache
Englisch
Anmerkungen
PLOS computational biology. - 17, 6 (2021) , e1009014, ISSN: 1553-7358

Ereignis
Veröffentlichung
(wo)
Freiburg
(wer)
Universität
(wann)
2024
Urheber
Gu, Qiang
Kumar, Anup
Bray, Simon A.
Creason, Allison
Khanteymoori, Alireza
Jalili, Vahid
Grüning, Björn
Goecks, Jeremy

DOI
10.1371/journal.pcbi.1009014
URN
urn:nbn:de:bsz:25-freidok-2478148
Rechteinformation
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Letzte Aktualisierung
25.03.2025, 13:42 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Beteiligte

Entstanden

  • 2024

Ähnliche Objekte (12)