Comparison of simultaneous multi-slice readout-segmented EPI and conventional single-shot EPI for diffusion tensor imaging of the ulnar nerve
Abstract: Purpose
To compare conventional single-shot echo planar imaging (ss-EPI) and simultaneous multi-slice (SMS) readout-segmented EPI (rs-EPI) for magnetic resonance diffusion tensor imaging (DTI) of the ulnar nerve.
Materials and methods
This study was approved by the local ethics committee. Ten healthy volunteers (mean age 30.4 ± 4.01 years; range 25–36 years) underwent 3T DTI of the ulnar nerve at the level of the cubital tunnel. DTI was performed based on ss-EPI as well as SMS rs-EPI sequences. Signal-to-noise ratio (SNR), image quality, and DTI parameters in the ulnar nerve (fractional anisotropy, FA; mean diffusivity, MD) were compared between the two sequences by two independent radiologists.
Results
Acquisition time was 5:12 min for ss-EPI and 5:18 min for SMS rs-EPI. Between the two sequences, no significant differences were found for derived DTI measures FA (p = 0.11) and MD values (p = 0.93). Compared to conventional ss-EPI, SMS rs-EPI yielded significantly less ghosting artifacts (p = 0.04) but inferior nerve depiction (p = 0.001) and worse overall image quality (p = 0.008).
Conclusion
SMS rs-EPI is not advantageous over ss-EPI in DTI of the ulnar nerve at the level of the cubital tunnel
- Standort
-
Deutsche Nationalbibliothek Frankfurt am Main
- Umfang
-
Online-Ressource
- Sprache
-
Englisch
- Anmerkungen
-
Heliyon. - 4, 10 (2018) , e00853, ISSN: 2405-8440
- Ereignis
-
Veröffentlichung
- (wo)
-
Freiburg
- (wer)
-
Universität
- (wann)
-
2023
- Urheber
-
Ho, Michael
Becker, Anton
Ulbrich, Erika
Manoliu, Andrei
Kuhn, Felix P.
Eberhard, Matthias
Filli, Lukas
- DOI
-
10.1016/j.heliyon.2018.e00853
- URN
-
urn:nbn:de:bsz:25-freidok-1481154
- Rechteinformation
-
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
- Letzte Aktualisierung
-
14.08.2025, 10:59 MESZ
Datenpartner
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Beteiligte
- Ho, Michael
- Becker, Anton
- Ulbrich, Erika
- Manoliu, Andrei
- Kuhn, Felix P.
- Eberhard, Matthias
- Filli, Lukas
- Universität
Entstanden
- 2023