Arbeitspapier

A nonparametric regression estimator that adapts to error distribution of unknown form

We propose a new estimator for nonparametric regression based on local likelihood estimation using an estimated error score function obtained from the residuals of a preliminary nonparametric regression. We show that our estimator is asymptotically equivalent to the infeasible local maximum likelihood estimator [Staniswalis (1989)], and hence improves on standard kernel estimators when the error distribution is not normal. We investigate the finite sample performance of our procedure on simulated data.

Sprache
Englisch

Erschienen in
Series: SFB 373 Discussion Paper ; No. 2001,33

Klassifikation
Wirtschaft
Estimation: General
Semiparametric and Nonparametric Methods: General
Single Equation Models; Single Variables: Truncated and Censored Models; Switching Regression Models; Threshold Regression Models
Thema
Adaptive Estimation
Asymptotic Expansions
Efficiency
Kernel
Local Likelihood Estimation
Nonparametrie Regression

Ereignis
Geistige Schöpfung
(wer)
Linton, Oliver Bruce
Xiao, Zhijie
Ereignis
Veröffentlichung
(wer)
Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes
(wo)
Berlin
(wann)
2001

Handle
URN
urn:nbn:de:kobv:11-10049681
Letzte Aktualisierung
10.03.2025, 11:42 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Linton, Oliver Bruce
  • Xiao, Zhijie
  • Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes

Entstanden

  • 2001

Ähnliche Objekte (12)