Arbeitspapier
A nonparametric regression estimator that adapts to error distribution of unknown form
We propose a new estimator for nonparametric regression based on local likelihood estimation using an estimated error score function obtained from the residuals of a preliminary nonparametric regression. We show that our estimator is asymptotically equivalent to the infeasible local maximum likelihood estimator [Staniswalis (1989)], and hence improves on standard kernel estimators when the error distribution is not normal. We investigate the finite sample performance of our procedure on simulated data.
- Sprache
-
Englisch
- Erschienen in
-
Series: SFB 373 Discussion Paper ; No. 2001,33
- Klassifikation
-
Wirtschaft
Estimation: General
Semiparametric and Nonparametric Methods: General
Single Equation Models; Single Variables: Truncated and Censored Models; Switching Regression Models; Threshold Regression Models
- Thema
-
Adaptive Estimation
Asymptotic Expansions
Efficiency
Kernel
Local Likelihood Estimation
Nonparametrie Regression
- Ereignis
-
Geistige Schöpfung
- (wer)
-
Linton, Oliver Bruce
Xiao, Zhijie
- Ereignis
-
Veröffentlichung
- (wer)
-
Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes
- (wo)
-
Berlin
- (wann)
-
2001
- Handle
- URN
-
urn:nbn:de:kobv:11-10049681
- Letzte Aktualisierung
-
10.03.2025, 11:42 MEZ
Datenpartner
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Objekttyp
- Arbeitspapier
Beteiligte
- Linton, Oliver Bruce
- Xiao, Zhijie
- Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes
Entstanden
- 2001