Artikel

Measures of dispersion and serial dependence in categorical time series

The analysis and modeling of categorical time series requires quantifying the extent of dispersion and serial dependence. The dispersion of categorical data is commonly measured by Gini index or entropy, but also the recently proposed extropy measure can be used for this purpose. Regarding signed serial dependence in categorical time series, we consider three types of κ-measures. By analyzing bias properties, it is shown that always one of the κ-measures is related to one of the above-mentioned dispersion measures. For doing statistical inference based on the sample versions of these dispersion and dependence measures, knowledge on their distribution is required. Therefore, we study the asymptotic distributions and bias corrections of the considered dispersion and dependence measures, and we investigate the finite-sample performance of the resulting asymptotic approximations with simulations. The application of the measures is illustrated with real-data examples from politics, economics and biology.

Sprache
Englisch

Erschienen in
Journal: Econometrics ; ISSN: 2225-1146 ; Volume: 7 ; Year: 2019 ; Issue: 2 ; Pages: 1-23 ; Basel: MDPI

Klassifikation
Wirtschaft
Thema
Cohen’
s k
extropy
nominal variation
signed serial dependence
asymptotic distribution

Ereignis
Geistige Schöpfung
(wer)
Weiß, Christian H.
Ereignis
Veröffentlichung
(wer)
MDPI
(wo)
Basel
(wann)
2019

DOI
doi:10.3390/econometrics7020017
Handle
Letzte Aktualisierung
10.03.2025, 11:44 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Artikel

Beteiligte

  • Weiß, Christian H.
  • MDPI

Entstanden

  • 2019

Ähnliche Objekte (12)