UP3: Unsupervised Predictive Path Planner for Mobile Robots in Unknown Environment

In this article, UP3, a novel unsupervised learning‐based predictive path planning framework for mobile robot navigation in partially observable environments is proposed. An offline unsupervised learning method is used for planner training to avoid frequent environment interactions or expert demonstration. The network employs attention‐based path optimization to generate the predictive path. Herein, the robot's safety is considered as a hard constraint, and the control barrier function constraint is used to design the collision loss. Additionally, a deep constraint correction module is designed to correct the predictive path, which aims to make the path satisfy the constraints. Herein, the approach through simulation and real‐world experiments is tested to verify the function of each module. In the results, it is indicated that UP3 performs well on dense and maze scenarios and has good generalization.

Standort
Deutsche Nationalbibliothek Frankfurt am Main
Umfang
Online-Ressource
Sprache
Englisch

Erschienen in
UP3: Unsupervised Predictive Path Planner for Mobile Robots in Unknown Environment ; day:23 ; month:02 ; year:2025 ; extent:10
Advanced intelligent systems ; (23.02.2025) (gesamt 10)

Urheber
Luo, Jianing
Zhu, Jiwei
Cui, Ruopeng
Lu, Gaoxiong
Li, Wei

DOI
10.1002/aisy.202400916
URN
urn:nbn:de:101:1-2502241305260.942531312426
Rechteinformation
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Letzte Aktualisierung
15.08.2025, 07:25 MESZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Beteiligte

  • Luo, Jianing
  • Zhu, Jiwei
  • Cui, Ruopeng
  • Lu, Gaoxiong
  • Li, Wei

Ähnliche Objekte (12)