Artikel

Intelligent decision support in proportional-stop-loss reinsurance using multiple attribute decision-making (MADM)

This article addresses the possibility of incorporating intelligent decision support systems into reinsurance decision-making. This involves the insurance company and the reinsurance company, and is negotiated through reinsurance intermediaries. The article proposes a decision flow to model the reinsurance design and selection process. This article focuses on adopting more than one optimality criteria under a more generic combinational design of commonly used reinsurance products, i.e., proportional reinsurance and stop-loss reinsurance. In terms of methodology, the significant contribution of the study the incorporation of the well-established decision analysis tool multiple-attribute decision-making (MADM) into the modelling of reinsurance selection. To illustrate the feasibility of incorporating intelligent decision supporting systems in the reinsurance market, the study includes a numerical case study using the simulation software @Risk in modeling insurance claims, as well as programming in MATLAB to realize MADM. A list of managerial implications could be drawn from the case study results. Most importantly, when choosing the most appropriate type of reinsurance, insurance companies should base their decisions on multiple measurements instead of single-criteria decision-making models so that their decisions may be more robust.

Sprache
Englisch

Erschienen in
Journal: Journal of Risk and Financial Management ; ISSN: 1911-8074 ; Volume: 10 ; Year: 2017 ; Issue: 4 ; Pages: 1-17 ; Basel: MDPI

Klassifikation
Wirtschaft
Thema
multi-attribute decision-making
reinsurance
proportional reinsurance
non-proportional reinsurance
TOPSIS

Ereignis
Geistige Schöpfung
(wer)
Wang, Shirley Jie Xuan
Poh, K. L.
Ereignis
Veröffentlichung
(wer)
MDPI
(wo)
Basel
(wann)
2017

DOI
doi:10.3390/jrfm10040022
Handle
Letzte Aktualisierung
10.03.2025, 11:44 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Artikel

Beteiligte

  • Wang, Shirley Jie Xuan
  • Poh, K. L.
  • MDPI

Entstanden

  • 2017

Ähnliche Objekte (12)