Arbeitspapier

Rate of Convergence of Predictive Distributions for Dependent Data

This paper deals with empirical processes of the type Cn(B) = n^(1/2) {µn(B) - P(Xn+1 in B | X1, . . . ,Xn)} , where (Xn) is a sequence of random variables and µn = (1/n)SUM(i=1,..,n) d(Xi) the empirical measure. Conditions for supB|Cn(B)| to converge stably (in particular, in distribution) are given, where B ranges over a suitable class of measurable sets. These conditions apply when (Xn) is exchangeable, or, more generally, conditionally identically distributed (in the sense of [6]). By such conditions, in some relevant situations, one obtains that supB|Cn(B)|-P->0 or even that n^(1/2) supB|Cn(B)| converges a.s.. Results of this type are useful in Bayesian statistics.

Language
Englisch

Bibliographic citation
Series: Quaderni di Dipartimento ; No. 091

Classification
Wirtschaft
Subject
Bayesian predictive inference
Central limit theorem
Conditional identity in distribution
Empirical distribution
Exchangeability
Predictive distribution
Stable convergence

Event
Geistige Schöpfung
(who)
Berti, Patrizia
Crimaldi, Irene
Pratelli, Luca
Rigo, Pietro
Event
Veröffentlichung
(who)
Università degli Studi di Pavia, Dipartimento di Economia Politica e Metodi Quantitativi (EPMQ)
(where)
Pavia
(when)
2009

Handle
Last update
10.03.2025, 11:44 AM CET

Data provider

This object is provided by:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.

Object type

  • Arbeitspapier

Associated

  • Berti, Patrizia
  • Crimaldi, Irene
  • Pratelli, Luca
  • Rigo, Pietro
  • Università degli Studi di Pavia, Dipartimento di Economia Politica e Metodi Quantitativi (EPMQ)

Time of origin

  • 2009

Other Objects (12)