Artikel

Spurious seasonality detection: A non-parametric test proposal

This paper offers a general and comprehensive definition of the day-of-the-week effect. Using symbolic dynamics, we develop a unique test based on ordinal patterns in order to detect it. This test uncovers the fact that the so-called 'day-of-the-week' effect is partly an artifact of the hidden correlation structure of the data. We present simulations based on artificial time series as well. While time series generated with long memory are prone to exhibit daily seasonality, pure white noise signals exhibit no pattern preference. Since ours is a non-parametric test, it requires no assumptions about the distribution of returns, so that it could be a practical alternative to conventional econometric tests. We also made an exhaustive application of the here-proposed technique to 83 stock indexes around the world. Finally, the paper highlights the relevance of symbolic analysis in economic time series studies.

Sprache
Englisch

Erschienen in
Journal: Econometrics ; ISSN: 2225-1146 ; Volume: 6 ; Year: 2018 ; Issue: 1 ; Pages: 1-15 ; Basel: MDPI

Klassifikation
Wirtschaft
Semiparametric and Nonparametric Methods: General
Econometric and Statistical Methods: Other
Financial Econometrics
Thema
daily seasonality
ordinal patterns
stock market
symbolic analysis

Ereignis
Geistige Schöpfung
(wer)
Bariviera, Aurelio F.
Plastino, Angelo
Judge, George
Ereignis
Veröffentlichung
(wer)
MDPI
(wo)
Basel
(wann)
2018

DOI
doi:10.3390/econometrics6010003
Handle
Letzte Aktualisierung
10.03.2025, 11:45 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Artikel

Beteiligte

  • Bariviera, Aurelio F.
  • Plastino, Angelo
  • Judge, George
  • MDPI

Entstanden

  • 2018

Ähnliche Objekte (12)