Mitigating Pt Loss in Polymer Electrolyte Membrane Fuel Cell Cathode Catalysts Using Graphene Nanoplatelet Pickering Emulsion Processing
Abstract: Carbon‐supported Pt nanoparticles are the leading catalysts for the cathode oxygen reduction reaction (ORR) in polymer electrolyte membrane fuel cells. However, these ORR catalysts suffer from poor electrochemical durability, particularly the loss of electrochemical surface area (ECSA) due to Pt nanoparticle dissolution and agglomeration. Here, Pt loss is mitigated through a Pickering emulsion‐processing strategy that employs graphene nanoplatelet dispersions stabilized by the polymer ethyl cellulose. The resulting graphene‐Pt/Vulcan carbon (Pt/C) catalysts exhibit superior durability and ECSA retention throughout an accelerated stress test compared with a commercial Pt/C standard catalyst, both in a diagnostic‐rotating disc electrode setup and in a membrane electrode assembly full cell. These graphene‐Pt/C catalysts also improve durability at high‐voltage conditions, providing further evidence of their exceptional electrochemical stability. Consistent with density functional theory calculations, postelectrochemical characterization reveals that Pt nanoparticles localize at graphene defects both on the basal plane and especially at the edges of the graphene nanoplatelets. Since this Pt nanoparticle localization suppresses Pt nanoparticle dissolution and agglomeration without hindering accessibility of the reactant species to the catalyst surface, the ORR performance under both idealized and practical experimental conditions shows significantly improved durability while maintaining high electrochemical activity.
- Location
-
Deutsche Nationalbibliothek Frankfurt am Main
- Extent
-
Online-Ressource
- Language
-
Englisch
- Bibliographic citation
-
Mitigating Pt Loss in Polymer Electrolyte Membrane Fuel Cell Cathode Catalysts Using Graphene Nanoplatelet Pickering Emulsion Processing ; day:18 ; month:08 ; year:2022 ; extent:9
Advanced functional materials ; (18.08.2022) (gesamt 9)
- Creator
-
Park, Kyu‐Young
Sweers, Matthew E.
Berner, Ulrich
Hirth, Erhard
Downing, Julia R.
Hui, Janan
Mailoa, Jonathan
Johnston, Christina
Kim, Soo
Seitz, Linsey C.
Hersam, Mark C.
- DOI
-
10.1002/adfm.202205216
- URN
-
urn:nbn:de:101:1-2022081915212886812687
- Rights
-
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
- Last update
-
15.08.2025, 7:34 AM CEST
Data provider
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.
Associated
- Park, Kyu‐Young
- Sweers, Matthew E.
- Berner, Ulrich
- Hirth, Erhard
- Downing, Julia R.
- Hui, Janan
- Mailoa, Jonathan
- Johnston, Christina
- Kim, Soo
- Seitz, Linsey C.
- Hersam, Mark C.