Konferenzbeitrag

A Joint Top Income and Wealth Distribution

Top distributions of income and wealth are still incompletely measured in many national statistics, particularly when using survey data. This paper develops the technique of incorporating the joint distributional relationship to enhance the estimation of these two top distributions. We leverage the bivariate parametric/non-parametric copula to extrapolate both income and wealth distributions from German PHF (Panel on Household Finance) data. The copula modelling potentially reduces the ad hocery in choosing the estimation domain as well as in the parametric specification (eg Pareto family) imposed by almost all the marginal approaches. One distinct feature of our paper is to complement the model fit with external validation. The copula estimate can help us to perform out-of-sample prediction on the very top of the tail distribution from one margin conditional on the characteristics of the other. The validation exercises show that our copula-based approach can approximate much closer to the top tax data and wealth "rich list" than those unconditional marginal extrapolations. The properness of copula and conditioning criterion seems to convince the asymmetric joint association between (labor) income and wealth (capital income) distributions as recently evidenced by other countries.

Sprache
Englisch

Erschienen in
Series: Beiträge zur Jahrestagung des Vereins für Socialpolitik 2020: Gender Economics

Klassifikation
Wirtschaft
Model Evaluation, Validation, and Selection
Specific Distributions; Specific Statistics
Methodology for Collecting, Estimating, and Organizing Microeconomic Data; Data Access
Personal Income, Wealth, and Their Distributions
Thema
income and wealth joint distribution
copula
heavy-tailed distributions
external consistency

Ereignis
Geistige Schöpfung
(wer)
Zhu, Junyi
Steiner, Viktor
Ereignis
Veröffentlichung
(wer)
ZBW - Leibniz Information Centre for Economics
(wo)
Kiel, Hamburg
(wann)
2020

Handle
Letzte Aktualisierung
10.03.2025, 11:43 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Konferenzbeitrag

Beteiligte

  • Zhu, Junyi
  • Steiner, Viktor
  • ZBW - Leibniz Information Centre for Economics

Entstanden

  • 2020

Ähnliche Objekte (12)