Development and evaluation of a new compact mechanism for aromatic oxidation in atmospheric models
Abstract x ≡ OH + HO 2) radicals. Specifically, GC13 features increased radical recycling and increased ozone destruction from phenoxy–phenylperoxy radical cycling relative to other mechanisms. We implement GC13 into the GEOS-Chem global chemical transport model and find higher glyoxal yields and net ozone loss from aromatic chemistry compared with other mechanisms. Aromatic oxidation in the model contributes 23 %, 5 %, and 8 % of global glyoxal, methylglyoxal, and formic acid production, respectively, and has mixed effects on formaldehyde. It drives small decreases in global tropospheric OH (- %), NOx (≡ NO + NO 2; - %), and ozone (- %), but a large increase in NO 3 + 22 %) from phenoxy–phenylperoxy radical cycling. Regional effects in polluted environments can be substantially larger, especially from the photolysis of carbonyls produced by aromatic oxidation, which drives large wintertime increases in OH and ozone concentrations.
- Location
-
Deutsche Nationalbibliothek Frankfurt am Main
- Extent
-
Online-Ressource
- Language
-
Englisch
- Bibliographic citation
-
Development and evaluation of a new compact mechanism for aromatic oxidation in atmospheric models ; volume:21 ; number:24 ; year:2021 ; pages:18351-18374 ; extent:24
Atmospheric chemistry and physics ; 21, Heft 24 (2021), 18351-18374 (gesamt 24)
- Creator
-
Bates, Kelvin H.
Jacob, Daniel J.
Li, Ke
Ivatt, Peter D.
Evans, Mathew John
Yan, Yingying
Lin, Jintai
- DOI
-
10.5194/acp-21-18351-2021
- URN
-
urn:nbn:de:101:1-2021122304335639604561
- Rights
-
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
- Last update
-
15.08.2025, 7:24 AM CEST
Data provider
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.
Associated
- Bates, Kelvin H.
- Jacob, Daniel J.
- Li, Ke
- Ivatt, Peter D.
- Evans, Mathew John
- Yan, Yingying
- Lin, Jintai