Development and evaluation of a new compact mechanism for aromatic oxidation in atmospheric models

Abstract x ≡ OH + HO 2) radicals. Specifically, GC13 features increased radical recycling and increased ozone destruction from phenoxy–phenylperoxy radical cycling relative to other mechanisms. We implement GC13 into the GEOS-Chem global chemical transport model and find higher glyoxal yields and net ozone loss from aromatic chemistry compared with other mechanisms. Aromatic oxidation in the model contributes 23 %, 5 %, and 8 % of global glyoxal, methylglyoxal, and formic acid production, respectively, and has mixed effects on formaldehyde. It drives small decreases in global tropospheric OH (- %), NOx (≡ NO + NO 2; - %), and ozone (- %), but a large increase in NO 3 + 22  %) from phenoxy–phenylperoxy radical cycling. Regional effects in polluted environments can be substantially larger, especially from the photolysis of carbonyls produced by aromatic oxidation, which drives large wintertime increases in OH and ozone concentrations.

Location
Deutsche Nationalbibliothek Frankfurt am Main
Extent
Online-Ressource
Language
Englisch

Bibliographic citation
Development and evaluation of a new compact mechanism for aromatic oxidation in atmospheric models ; volume:21 ; number:24 ; year:2021 ; pages:18351-18374 ; extent:24
Atmospheric chemistry and physics ; 21, Heft 24 (2021), 18351-18374 (gesamt 24)

Creator
Bates, Kelvin H.
Jacob, Daniel J.
Li, Ke
Ivatt, Peter D.
Evans, Mathew John
Yan, Yingying
Lin, Jintai

DOI
10.5194/acp-21-18351-2021
URN
urn:nbn:de:101:1-2021122304335639604561
Rights
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Last update
15.08.2025, 7:24 AM CEST

Data provider

This object is provided by:
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.

Associated

  • Bates, Kelvin H.
  • Jacob, Daniel J.
  • Li, Ke
  • Ivatt, Peter D.
  • Evans, Mathew John
  • Yan, Yingying
  • Lin, Jintai

Other Objects (12)