Inverse Design of Nanoparticles Using Multi‐Target Machine Learning

Abstract: In this study a new approach to inverse design is presented that draws on the multi‐functionality of nanomaterials and uses sets of properties to predict a unique nanoparticle structure. This approach involves multi‐target regression and uses a precursory forward structure/property prediction to focus the model on the most important characteristics before inverting the problem and simultaneously predicting multiple structural features of a single nanoparticle. The workflow is general, as demonstrated on two nanoparticle data sets, and can rapidly predict property/structure relationships to guide further research and development without the need for additional optimization or high‐throughput sampling.

Location
Deutsche Nationalbibliothek Frankfurt am Main
Extent
Online-Ressource
Language
Englisch

Bibliographic citation
Inverse Design of Nanoparticles Using Multi‐Target Machine Learning ; day:07 ; month:12 ; year:2021 ; extent:12
Advanced theory and simulations ; (07.12.2021) (gesamt 12)

Creator
Li, Sichao
Barnard, Amanda

DOI
10.1002/adts.202100414
URN
urn:nbn:de:101:1-2021120814430730403761
Rights
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Last update
15.08.2025, 7:37 AM CEST

Data provider

This object is provided by:
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.

Associated

Other Objects (12)