Arbeitspapier
Sparse non Gaussian component analysis by semidefinite programming
Sparse non-Gaussian component analysis (SNGCA) is an unsupervised method of extracting a linear structure from a high dimensional data based on estimating a low-dimensional non-Gaussian data component. In this paper we discuss a new approach to direct estimation of the projector on the target space based on semidefinite programming which improves the method sensitivity to a broad variety of deviations from normality. We also discuss the procedures which allows to recover the structure when its effective dimension is unknown.
- Sprache
-
Englisch
- Erschienen in
-
Series: SFB 649 Discussion Paper ; No. 2011-080
- Klassifikation
-
Wirtschaft
Semiparametric and Nonparametric Methods: General
- Thema
-
dimension reduction
non-Gaussian components analysis
feature extraction
- Ereignis
-
Geistige Schöpfung
- (wer)
-
Diederichs, Elmar
Juditsky, Anatoli
Nemirovski, Arkadi
Spokoiny, Vladimir
- Ereignis
-
Veröffentlichung
- (wer)
-
Humboldt University of Berlin, Collaborative Research Center 649 - Economic Risk
- (wo)
-
Berlin
- (wann)
-
2011
- Handle
- Letzte Aktualisierung
-
10.03.2025, 11:41 MEZ
Datenpartner
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Objekttyp
- Arbeitspapier
Beteiligte
- Diederichs, Elmar
- Juditsky, Anatoli
- Nemirovski, Arkadi
- Spokoiny, Vladimir
- Humboldt University of Berlin, Collaborative Research Center 649 - Economic Risk
Entstanden
- 2011