Arbeitspapier
Sparse non Gaussian component analysis by semidefinite programming
Sparse non-Gaussian component analysis (SNGCA) is an unsupervised method of extracting a linear structure from a high dimensional data based on estimating a low-dimensional non-Gaussian data component. In this paper we discuss a new approach to direct estimation of the projector on the target space based on semidefinite programming which improves the method sensitivity to a broad variety of deviations from normality. We also discuss the procedures which allows to recover the structure when its effective dimension is unknown.
- Language
-
Englisch
- Bibliographic citation
-
Series: SFB 649 Discussion Paper ; No. 2011-080
- Classification
-
Wirtschaft
Semiparametric and Nonparametric Methods: General
- Subject
-
dimension reduction
non-Gaussian components analysis
feature extraction
- Event
-
Geistige Schöpfung
- (who)
-
Diederichs, Elmar
Juditsky, Anatoli
Nemirovski, Arkadi
Spokoiny, Vladimir
- Event
-
Veröffentlichung
- (who)
-
Humboldt University of Berlin, Collaborative Research Center 649 - Economic Risk
- (where)
-
Berlin
- (when)
-
2011
- Handle
- Last update
-
10.03.2025, 11:41 AM CET
Data provider
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.
Object type
- Arbeitspapier
Associated
- Diederichs, Elmar
- Juditsky, Anatoli
- Nemirovski, Arkadi
- Spokoiny, Vladimir
- Humboldt University of Berlin, Collaborative Research Center 649 - Economic Risk
Time of origin
- 2011