Oxidation Behavior of Glassy Carbon in Acidic Electrolyte

Abstract: Glassy carbon is frequently used in electrochemical research due to its presumed robust electrochemical performance. Although it is widely utilized as a rotating disc electrode material, the modification of glassy carbon during electro‐catalytic process is rarely emphasized or characterized. In this report, we investigated the structural modification of glassy carbon imparted by electrochemical oxidation in acidic media and compared the behavior with graphite. The functional groups generated from electrochemical oxidation in both electrodes possess similar electrochemical properties. However, above an oxidation potential of 1.8 V (vs. reversibly hydrogen electrode), glassy carbon exhibits a lower electrochemical capacitance compared to graphite. We propose that the existence of electrochemically inactive species, originating from the non‐graphitic portion of glassy carbon is attributed to such deterioration. Additionally, high resolution scanning electron microscopy (HR‐SEM) and high‐resolution transmission electron microscopy (HR‐TEM) images corroborate how electrochemical oxidation prevails for glassy carbon electrodes at oxidative potentials. The overall analysis leads us to propose a corrosion mechanism for glassy carbon in acidic solution.

Location
Deutsche Nationalbibliothek Frankfurt am Main
Extent
Online-Ressource
Language
Englisch

Bibliographic citation
Oxidation Behavior of Glassy Carbon in Acidic Electrolyte ; day:05 ; month:10 ; year:2022 ; extent:1
ChemElectroChem ; (05.10.2022) (gesamt 1)

Creator
Choudhury, Sakeb Hasan
Ding, Yuxiao
Yi, Youngmi
Rohner, Christian
Frandsen, Wiebke
Lunkenbein, Thomas
Greiner, Mark
Schlögl, Robert
Heumann, Saskia

DOI
10.1002/celc.202200637
URN
urn:nbn:de:101:1-2022100615020524957540
Rights
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Last update
15.08.2025, 7:28 AM CEST

Data provider

This object is provided by:
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.

Associated

  • Choudhury, Sakeb Hasan
  • Ding, Yuxiao
  • Yi, Youngmi
  • Rohner, Christian
  • Frandsen, Wiebke
  • Lunkenbein, Thomas
  • Greiner, Mark
  • Schlögl, Robert
  • Heumann, Saskia

Other Objects (12)