Super‐Resolution of Histopathological Frozen Sections via Deep Learning Preserving Tissue Structure

Histopathology plays a pivotal role in medical diagnostics. In contrast to preparing permanent sections for histopathology, a time‐consuming process, preparing frozen sections is significantly faster and can be performed during surgery, where the sample scanning time should be optimized. Super‐resolution techniques allow imaging of histopathalogical samples in lower magnification, thus sparing scanning time. Herein, a new approach is presented to super‐resolution of histopathological frozen sections, with focus on achieving better distortion measures, rather than pursuing photorealistic images that may compromise critical diagnostic information. Our deep‐learning architecture focuses on learning the error between interpolated images and real images; thereby generating high‐resolution images while preserving critical image details, which reduces the risk of diagnostic misinterpretation. This is done by leveraging the loss functions in the frequency domain and assigning higher weights to the reconstruction of complex, high‐frequency components. In comparison with existing methods, significant improvements are obtained in terms of distortion metrics, improving the pathologist's clinical decisions. This approach has a great potential to provide faster frozen‐section imaging, with less scanning, speeding up intraoperative decisions, while preserving the high‐resolution details in the imaged sample.

Standort
Deutsche Nationalbibliothek Frankfurt am Main
Umfang
Online-Ressource
Sprache
Englisch

Erschienen in
Super‐Resolution of Histopathological Frozen Sections via Deep Learning Preserving Tissue Structure ; day:08 ; month:07 ; year:2024 ; extent:10
Advanced intelligent systems ; (08.07.2024) (gesamt 10)

Urheber
Yoshai, Elad
Goldinger, Gil
Haifler, Miki
Shaked, Natan T.

DOI
10.1002/aisy.202300672
URN
urn:nbn:de:101:1-2407091443422.049924562831
Rechteinformation
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Letzte Aktualisierung
14.08.2025, 10:57 MESZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Beteiligte

  • Yoshai, Elad
  • Goldinger, Gil
  • Haifler, Miki
  • Shaked, Natan T.

Ähnliche Objekte (12)