A Critical Point Theorem for Perturbed Functionals and Low Perturbations of Differential and Nonlocal Systems
Abstract: In this paper we establish a new critical point theorem for a class of perturbed differentiable functionals without satisfying the Palais–Smale condition. We prove the existence of at least one critical point to such functionals, provided that the perturbation is sufficiently small. The main abstract result of this paper is applied both to perturbed nonhomogeneous equations in Orlicz–Sobolev spaces and to nonlocal problems in fractional Sobolev spaces.
- Location
-
Deutsche Nationalbibliothek Frankfurt am Main
- Extent
-
Online-Ressource
- Language
-
Englisch
- Bibliographic citation
-
A Critical Point Theorem for Perturbed Functionals and Low Perturbations of Differential and Nonlocal Systems ; volume:20 ; number:3 ; year:2020 ; pages:663-674 ; extent:12
Advanced nonlinear studies ; 20, Heft 3 (2020), 663-674 (gesamt 12)
- Creator
- DOI
-
10.1515/ans-2020-2095
- URN
-
urn:nbn:de:101:1-2405031625441.779369551329
- Rights
-
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
- Last update
-
14.08.2025, 10:56 AM CEST
Data provider
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.
Associated
- Bahrouni, Anouar
- Rădulescu, Vicenţiu D.
- Winkert, Patrick