A Critical Point Theorem for Perturbed Functionals and Low Perturbations of Differential and Nonlocal Systems

Abstract: In this paper we establish a new critical point theorem for a class of perturbed differentiable functionals without satisfying the Palais–Smale condition. We prove the existence of at least one critical point to such functionals, provided that the perturbation is sufficiently small. The main abstract result of this paper is applied both to perturbed nonhomogeneous equations in Orlicz–Sobolev spaces and to nonlocal problems in fractional Sobolev spaces.

Location
Deutsche Nationalbibliothek Frankfurt am Main
Extent
Online-Ressource
Language
Englisch

Bibliographic citation
A Critical Point Theorem for Perturbed Functionals and Low Perturbations of Differential and Nonlocal Systems ; volume:20 ; number:3 ; year:2020 ; pages:663-674 ; extent:12
Advanced nonlinear studies ; 20, Heft 3 (2020), 663-674 (gesamt 12)

Creator

DOI
10.1515/ans-2020-2095
URN
urn:nbn:de:101:1-2405031625441.779369551329
Rights
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Last update
14.08.2025, 10:56 AM CEST

Data provider

This object is provided by:
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.

Associated

Other Objects (12)