Strain‐Driven Superlubricity of Graphene/Graphene in Commensurate Contact

Abstract: The occurrence of structural superlubricity (SSL) requires that two sliding surfaces be in incommensurate contact. However, the incommensurate contact between two sliding surfaces is fundamentally an instable state whose maintenance over time is extremely laborious. To circumvent this difficulty, it is proposed in the present work to change the paradigm of making appear superlubricity and keeping it over time. Two graphene layers in sliding commensurate contact, which are subjected to an isotropic in‐plane synchronous strain, are considered and studied. First, by DFT calculations, it is demonstrated that the synchronous strain‐driven superlubricity (SSDSL) takes place for some particular sliding paths or for all sliding paths, once the compressive strain prescribed reaches 15% or 35%. Next, the Prandtl‐Tomlinson (P‐T) model is used to explain how to modulate stick‐slip, continuous and frictionless slides by the strain. Finally, the SSDSL of two graphene layers in commensurate contact is justified in detail by the interfacial charge density transfer due to the strain. The results obtained by the present work open a new perspective of realizing superlubricity in a robust way.

Location
Deutsche Nationalbibliothek Frankfurt am Main
Extent
Online-Ressource
Language
Englisch

Bibliographic citation
Strain‐Driven Superlubricity of Graphene/Graphene in Commensurate Contact ; day:03 ; month:03 ; year:2023 ; extent:7
Advanced materials interfaces ; (03.03.2023) (gesamt 7)

Creator
Cheng, Ziwen
Feng, Haochen
Sun, Junhui
Lu, Zhibin
He, Q.‐C.

DOI
10.1002/admi.202202062
URN
urn:nbn:de:101:1-2023030414095806098890
Rights
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Last update
14.08.2025, 11:00 AM CEST

Data provider

This object is provided by:
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.

Associated

  • Cheng, Ziwen
  • Feng, Haochen
  • Sun, Junhui
  • Lu, Zhibin
  • He, Q.‐C.

Other Objects (12)