A TWO-STAGE APPROACH FOR RARE CLASS SEGMENTATION IN LARGE-SCALE URBAN POINT CLOUDS

Abstract. Although deep learning has greatly improved the semantic segmentation accuracy of point clouds, the segmentation of rare classes in large-scale urban scenes has not been targeted in available methods. This paper proposes a two-stage segmentation framework with automated workflows for imbalanced rare classes based on general semantic segmentation. The proposed approach includes two stages: general semantic segmentation and object-based refined semantic segmentation. Firstly, general segmentation networks are utilized to segment general large objects. Secondly, refined semantic segmentation is conducted by an automated workflow: 3D clustering and bounding box (BBox) generation are applied to the point cloud of rare fine-grained objects during the training, followed by object detection to extract fine-grained objects. Afterwards, as the constraints, the extracted BBoxes further refine the segmentation results. Our approach is evaluated on the Hessigheim High-Resolution 3D Point Cloud (H3D) Benchmark and obtains state-of-the-art 89.35% overall accuracy and outstanding 75.70% mean F1-Score. Furthermore, rare classes Vehicle and Chimney achieve breakthroughs from zero to 63.63% and 52.00% in F1-score, respectively.

Standort
Deutsche Nationalbibliothek Frankfurt am Main
Umfang
Online-Ressource
Sprache
Englisch

Erschienen in
A TWO-STAGE APPROACH FOR RARE CLASS SEGMENTATION IN LARGE-SCALE URBAN POINT CLOUDS ; volume:XLIII-B2-2022 ; year:2022 ; pages:329-334 ; extent:6
The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences ; XLIII-B2-2022 (2022), 329-334 (gesamt 6)

Urheber
Zhang, X.
Xue, R.
Soergel, U.

DOI
10.5194/isprs-archives-XLIII-B2-2022-329-2022
URN
urn:nbn:de:101:1-2022060905332535118745
Rechteinformation
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Letzte Aktualisierung
15.08.2025, 07:38 MESZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Beteiligte

  • Zhang, X.
  • Xue, R.
  • Soergel, U.

Ähnliche Objekte (12)