Arbeitspapier

Stochastic Frontier Production Function With Errors-In-Variables

This paper develops a procedure for estimating parameters of a cross-sectional stochastic frontier production function when the factors of production suffer from measurement errors. Specifically, we use Fuller's (1987) reliability ratio concept to develop an estimator for the model in Aigner et al (1977). Our Monte-Carlo simulation exercise illustrates the direction and the severity of bias in the estimates of the elasticity parameters and the returns to scale feature of the production function when using the traditional maximum-likelihood estimator (MLE) in presence of measurement errors. In contrast the reliability ratio based estimator consistently estimates these parameters even under extreme degree of measurement errors. Additionally, estimates of firm level technical efficiency are severely biased for traditional MLE compared to reliability ratio estimator, rendering inter-firm efficiency comparisons infeasible. The seriousness of measurement errors in a practical setting is demonstrated by using data for a cross-section of publicly traded U.S. corporations.

Sprache
Englisch

Erschienen in
Series: Working Paper ; No. 1999:7

Klassifikation
Wirtschaft
Statistical Simulation Methods: General
Single Equation Models; Single Variables: Cross-Sectional Models; Spatial Models; Treatment Effect Models; Quantile Regressions
Production; Cost; Capital; Capital, Total Factor, and Multifactor Productivity; Capacity
Thema
Errors-In-Variables
Stochastic Frontier
Technical Efficiency
Reliability Ratio

Ereignis
Geistige Schöpfung
(wer)
Dhawan, Rajeev
Jochumzen, Peter
Ereignis
Veröffentlichung
(wer)
Lund University, School of Economics and Management, Department of Economics
(wo)
Lund
(wann)
1999

Handle
Letzte Aktualisierung
10.03.2025, 11:41 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Dhawan, Rajeev
  • Jochumzen, Peter
  • Lund University, School of Economics and Management, Department of Economics

Entstanden

  • 1999

Ähnliche Objekte (12)