Existence of Multiple Periodic Solutions for a Semilinear Wave Equation in an n -Dimensional Ball

Abstract: This paper is devoted to the study of periodic solutions for a radially symmetric semilinear wave equation in an n-dimensional ball. By combining the variational methods and saddle point reduction technique, we obtain the existence of at least three periodic solutions for arbitrary space dimension n. The structure of the spectrum of the linearized problem plays an essential role in the proof, and the construction of a suitable working space is devised to overcome the restriction of space dimension.

Location
Deutsche Nationalbibliothek Frankfurt am Main
Extent
Online-Ressource
Language
Englisch

Bibliographic citation
Existence of Multiple Periodic Solutions for a Semilinear Wave Equation in an n -Dimensional Ball ; volume:19 ; number:3 ; year:2019 ; pages:529-544 ; extent:16
Advanced nonlinear studies ; 19, Heft 3 (2019), 529-544 (gesamt 16)

Creator
Wei, Hui
Ji, Shuguan

DOI
10.1515/ans-2018-2036
URN
urn:nbn:de:101:1-2405031614033.494647552588
Rights
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Last update
14.08.2025, 11:03 AM CEST

Data provider

This object is provided by:
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.

Associated

  • Wei, Hui
  • Ji, Shuguan

Other Objects (12)