Existence of Multiple Periodic Solutions for a Semilinear Wave Equation in an n -Dimensional Ball
Abstract: This paper is devoted to the study of periodic solutions for a radially symmetric semilinear wave equation in an n-dimensional ball. By combining the variational methods and saddle point reduction technique, we obtain the existence of at least three periodic solutions for arbitrary space dimension n. The structure of the spectrum of the linearized problem plays an essential role in the proof, and the construction of a suitable working space is devised to overcome the restriction of space dimension.
- Location
-
Deutsche Nationalbibliothek Frankfurt am Main
- Extent
-
Online-Ressource
- Language
-
Englisch
- Bibliographic citation
-
Existence of Multiple Periodic Solutions for a Semilinear Wave Equation in an n -Dimensional Ball ; volume:19 ; number:3 ; year:2019 ; pages:529-544 ; extent:16
Advanced nonlinear studies ; 19, Heft 3 (2019), 529-544 (gesamt 16)
- Creator
-
Wei, Hui
Ji, Shuguan
- DOI
-
10.1515/ans-2018-2036
- URN
-
urn:nbn:de:101:1-2405031614033.494647552588
- Rights
-
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
- Last update
-
14.08.2025, 11:03 AM CEST
Data provider
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.
Associated
- Wei, Hui
- Ji, Shuguan