Artikel

Spurious relationships for nearly non-stationary series

Literature shows that the regression of independent and (nearly) nonstationary time series could result in spurious outcomes. In this paper, we conjecture that under some situations, the regression of two independent and nearly non-stationary series does not have any spurious problem at all. To check whether our conjecture holds, we set up several situations and conduct simulations to justify our conjecture. Our simulations show that under some situations, the chance that the regressions being spurious is very high for all the cases simulated in our paper. Nonetheless, under some other situations, our simulation shows that the rejection rates are much smaller than the 5% level of significance for all the cases simulated in our paper, implying that our conjecture could hold under some situations that regression of two independent and nearly non-stationary series does not have any spurious problem at all.

Sprache
Englisch

Erschienen in
Journal: Journal of Risk and Financial Management ; ISSN: 1911-8074 ; Volume: 14 ; Year: 2021 ; Issue: 8 ; Pages: 1-24 ; Basel: MDPI

Klassifikation
Wirtschaft
Econometrics
Statistical Simulation Methods: General
Single Equation Models; Single Variables: Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
Financial Econometrics
Mathematical Methods; Programming Models; Mathematical and Simulation Modeling: General
Thema
cointegration
nearly non-stationarity
non-stationarity
spurious problem
stationarity

Ereignis
Geistige Schöpfung
(wer)
Cheng, Yushan
Hui, Yongchang
McAleer, Michael
Wong, Wing Keung
Ereignis
Veröffentlichung
(wer)
MDPI
(wo)
Basel
(wann)
2021

DOI
doi:10.3390/jrfm14080366
Handle
Letzte Aktualisierung
10.03.2025, 11:43 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Artikel

Beteiligte

  • Cheng, Yushan
  • Hui, Yongchang
  • McAleer, Michael
  • Wong, Wing Keung
  • MDPI

Entstanden

  • 2021

Ähnliche Objekte (12)