Experiences From FAIRifying Community Data and FAIR Infrastructure in Biomedical Research Domains

Abstract: FAIR data is considered good data. However, it can be difficult to quantify data FAIRness objectively, without appropriate tooling. To address this issue, FAIR metrics were developed in the early days of the FAIR era. However, to be truly informative, these metrics must be carefully interpreted in the context of a specific domain, and sometimes even of a project. Here, we share our experience with FAIR assessments and FAIRification processes in the biomedical domain. We aim to raise the awareness that “being FAIR” is not an easy goal, neither the principles are easily implemented. FAIR goes far beyond technical implementations: it requires time, expertise, communication and a shift in mindset. . https://www.tib-op.org/ojs/index.php/CoRDI/article/view/415

Standort
Deutsche Nationalbibliothek Frankfurt am Main
Umfang
Online-Ressource
Sprache
Englisch

Erschienen in
Experiences From FAIRifying Community Data and FAIR Infrastructure in Biomedical Research Domains ; volume:1 ; year:2023
Proceedings of the conference on research data infrastructure ; 1 (2023)

Urheber
Waltemath, Dagmar
Inau, Esther
Michaelis, Lea
Satagopam, Venkata
Balaur, Irina

DOI
10.52825/cordi.v1i.415
URN
urn:nbn:de:101:1-2023120114210490265986
Rechteinformation
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Letzte Aktualisierung
15.08.2025, 07:28 MESZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Beteiligte

Ähnliche Objekte (12)