Modelling point mass balance for the glaciers of the Central European Alps using machine learning techniques

Abstract 0.713 1.071  m w.e. The feature importance values associated with all machine learning models suggested a high importance of meteorological variables associated with ablation. This is in line with predominantly negative mass balance observations. We conclude that machine learning techniques are promising in estimating glacier mass balance and can incorporate information from more significant meteorological variables as opposed to a simplified set of variables used in temperature index models.

Location
Deutsche Nationalbibliothek Frankfurt am Main
Extent
Online-Ressource
Language
Englisch

Bibliographic citation
Modelling point mass balance for the glaciers of the Central European Alps using machine learning techniques ; volume:17 ; number:7 ; year:2023 ; pages:2811-2828 ; extent:18
The Cryosphere ; 17, Heft 7 (2023), 2811-2828 (gesamt 18)

Creator
Anilkumar, Ritu
Bharti, Rishikesh
Chutia, Dibyajyoti
Aggarwal, Shiv Prasad

DOI
10.5194/tc-17-2811-2023
URN
urn:nbn:de:101:1-2023072004390392956812
Rights
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Last update
14.08.2025, 10:54 AM CEST

Data provider

This object is provided by:
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.

Associated

  • Anilkumar, Ritu
  • Bharti, Rishikesh
  • Chutia, Dibyajyoti
  • Aggarwal, Shiv Prasad

Other Objects (12)