Konferenzbeitrag

A Supervised learning approach for the extraction of opinion sources and targets from German text

We present the first systematic supervised learning approach for the extraction of opinion sources and targets on German language data. A wide choice of different features is presented, particularly syntactic features and generalization features. We point out specific differences between opinion sources and targets. Moreover, we explain why implicit sources can be extracted even with fairly generic features. In order to ensure comparability our classifier is trained and tested on the dataset of the STEPS shared task.

A Supervised learning approach for the extraction of opinion sources and targets from German text

Urheber*in: Wiegand, Michael; Chikobava, Margarita; Ruppenhofer, Josef

Attribution - NonCommercial - ShareAlike 4.0 International

0
/
0

Language
Englisch

Subject
Deutsch
Semantische Analyse
Propositionale Einstellung
Automatische Sprachanalyse
Sprache

Event
Geistige Schöpfung
(who)
Wiegand, Michael
Chikobava, Margarita
Ruppenhofer, Josef
Event
Veröffentlichung
(who)
München [u.a.] : German Society for Computational Linguistics & Language Technology und Friedrich-Alexander-Universität Erlangen-Nürnberg
(when)
2019-10-15

URN
urn:nbn:de:bsz:mh39-93218
Last update
06.03.2025, 9:00 AM CET

Data provider

This object is provided by:
Leibniz-Institut für Deutsche Sprache - Bibliothek. If you have any questions about the object, please contact the data provider.

Object type

  • Konferenzbeitrag

Associated

  • Wiegand, Michael
  • Chikobava, Margarita
  • Ruppenhofer, Josef
  • München [u.a.] : German Society for Computational Linguistics & Language Technology und Friedrich-Alexander-Universität Erlangen-Nürnberg

Time of origin

  • 2019-10-15

Other Objects (12)