Arbeitspapier

Censored quantile regression survival models with a cure proportion

A new quantile regression model for survival data is proposed that permits a positive proportion of subjects to become unsusceptible to recurrence of disease following treatment or based on other observable characteristics. In contrast to prior proposals for quantile regression estimation of censored survival models, we propose a new "data augmentation" approach to estimation. Our approach has computational advantages over earlier approaches proposed by Wu and Yin (2013, 2017). We compare our method with the two estimation strategies proposed by Wu and Yin and demonstrate its advantageous empirical performance in simulations. The methods are also illustrated with data from a Lung Cancer survival study.

Sprache
Englisch

Erschienen in
Series: cemmap working paper ; No. CWP56/19

Klassifikation
Wirtschaft
Thema
Survival data
cure proportion
quantile regression
mixture models
data augmentation

Ereignis
Geistige Schöpfung
(wer)
Narisetty, Naveen
Koenker, Roger
Ereignis
Veröffentlichung
(wer)
Centre for Microdata Methods and Practice (cemmap)
(wo)
London
(wann)
2019

DOI
doi:10.1920/wp.cem.2019.5619
Handle
Letzte Aktualisierung
10.03.2025, 11:45 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Narisetty, Naveen
  • Koenker, Roger
  • Centre for Microdata Methods and Practice (cemmap)

Entstanden

  • 2019

Ähnliche Objekte (12)