Arbeitspapier
On the (im-)possibility of representing probability distributions as a difference of i.i.d. noise terms
A random variable is difference-form decomposable (DFD) if it may be written as the difference of two i.i.d. random terms. We show that densities of such variables exhibit a remarkable degree of structure. Specifically, a DFD density can be neither approximately uniform, nor quasiconvex, nor strictly concave. On the other hand, a DFD density need, in general, be neither unimodal nor logconcave. Regarding smoothness, we show that a compactly supported DFD density cannot be analytic and will often exhibit a kink even if its components are smooth. The analysis highlights the risks for model consistency resulting from the strategy widely adopted in the economics literature of imposing assumptions directly on a difference of noise terms rather than on its components.
- Sprache
-
Englisch
- Erschienen in
-
Series: Working Paper ; No. 428
- Klassifikation
-
Wirtschaft
Specific Distributions; Specific Statistics
- Thema
-
Differences of random variables
density functions
characteristic function
uniform distribution
- Ereignis
-
Geistige Schöpfung
- (wer)
-
Ewerhart, Christian
Serena, Marco
- Ereignis
-
Veröffentlichung
- (wer)
-
University of Zurich, Department of Economics
- (wo)
-
Zurich
- (wann)
-
2023
- DOI
-
doi:10.5167/uzh-231569
- Handle
- Letzte Aktualisierung
-
10.03.2025, 11:46 MEZ
Datenpartner
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Objekttyp
- Arbeitspapier
Beteiligte
- Ewerhart, Christian
- Serena, Marco
- University of Zurich, Department of Economics
Entstanden
- 2023