Arbeitspapier

On the (im-)possibility of representing probability distributions as a difference of i.i.d. noise terms

A random variable is difference-form decomposable (DFD) if it may be written as the difference of two i.i.d. random terms. We show that densities of such variables exhibit a remarkable degree of structure. Specifically, a DFD density can be neither approximately uniform, nor quasiconvex, nor strictly concave. On the other hand, a DFD density need, in general, be neither unimodal nor logconcave. Regarding smoothness, we show that a compactly supported DFD density cannot be analytic and will often exhibit a kink even if its components are smooth. The analysis highlights the risks for model consistency resulting from the strategy widely adopted in the economics literature of imposing assumptions directly on a difference of noise terms rather than on its components.

Sprache
Englisch

Erschienen in
Series: Working Paper ; No. 428

Klassifikation
Wirtschaft
Specific Distributions; Specific Statistics
Thema
Differences of random variables
density functions
characteristic function
uniform distribution

Ereignis
Geistige Schöpfung
(wer)
Ewerhart, Christian
Serena, Marco
Ereignis
Veröffentlichung
(wer)
University of Zurich, Department of Economics
(wo)
Zurich
(wann)
2023

DOI
doi:10.5167/uzh-231569
Handle
Letzte Aktualisierung
10.03.2025, 11:46 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Ewerhart, Christian
  • Serena, Marco
  • University of Zurich, Department of Economics

Entstanden

  • 2023

Ähnliche Objekte (12)