Qualitative analysis for the nonlinear fractional Hartree type system with nonlocal interaction
Abstract: In the present paperwe study the existence of nontrivial solutions of a class of static coupled nonlinear fractional Hartree type system. First, we use the direct moving plane methods to establish the maximum principle (Decay at infinity and Narrow region principle) and prove the symmetry and nonexistence of positive solution of this nonlocal system. Second, we make complete classification of positive solutions of the system in the critical case when some parameters are equal. Finally, we prove the existence of multiple nontrivial solutions in the critical case according to the different parameters ranges by using variational methods. To accomplish our results we establish the maximum principle for the fractional nonlocal system.
- Location
-
Deutsche Nationalbibliothek Frankfurt am Main
- Extent
-
Online-Ressource
- Language
-
Englisch
- Bibliographic citation
-
Qualitative analysis for the nonlinear fractional Hartree type system with nonlocal interaction ; volume:11 ; number:1 ; year:2021 ; pages:385-416 ; extent:32
Advances in nonlinear analysis ; 11, Heft 1 (2021), 385-416 (gesamt 32)
- Creator
-
Wang, Jun
- DOI
-
10.1515/anona-2021-0202
- URN
-
urn:nbn:de:101:1-2022072014133525745444
- Rights
-
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
- Last update
-
15.08.2025, 7:29 AM CEST
Data provider
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.
Associated
- Wang, Jun