Qualitative analysis for the nonlinear fractional Hartree type system with nonlocal interaction

Abstract: In the present paperwe study the existence of nontrivial solutions of a class of static coupled nonlinear fractional Hartree type system. First, we use the direct moving plane methods to establish the maximum principle (Decay at infinity and Narrow region principle) and prove the symmetry and nonexistence of positive solution of this nonlocal system. Second, we make complete classification of positive solutions of the system in the critical case when some parameters are equal. Finally, we prove the existence of multiple nontrivial solutions in the critical case according to the different parameters ranges by using variational methods. To accomplish our results we establish the maximum principle for the fractional nonlocal system.

Standort
Deutsche Nationalbibliothek Frankfurt am Main
Umfang
Online-Ressource
Sprache
Englisch

Erschienen in
Qualitative analysis for the nonlinear fractional Hartree type system with nonlocal interaction ; volume:11 ; number:1 ; year:2021 ; pages:385-416 ; extent:32
Advances in nonlinear analysis ; 11, Heft 1 (2021), 385-416 (gesamt 32)

Urheber
Wang, Jun

DOI
10.1515/anona-2021-0202
URN
urn:nbn:de:101:1-2022072014133525745444
Rechteinformation
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Letzte Aktualisierung
15.08.2025, 07:29 MESZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Beteiligte

  • Wang, Jun

Ähnliche Objekte (12)