Arbeitspapier

Multivariate stochastic volatility models based on non-Gaussian Ornstein-Uhlenbeck processes: A quasi-likelihood approach

This paper extends the ordinary quasi-likelihood estimator for stochastic volatility models based on non-Gaussian Ornstein-Uhlenbeck (OU) processes to vector processes. Despite the fact that multivariate modeling of asset returns is essential for portfolio optimization and risk management -- major areas of financial analysis -- the literature on multivariate modeling of asset prices in continuous time is sparse, both with regard to theoretical and applied results. This paper uses non-Gaussian OU-processes as building blocks for multivariate models for high frequency financial data. The OU framework allows exact discrete time transition equations that can be represented on a linear state space form. We show that a computationally feasible quasi-likelihood function can be constructed by means of the Kalman filter also in the case of high-dimensional vector processes. The framework is applied to Euro/NOK and US Dollar/NOK exchange rate data for the period 2.1.1989-4.2.2010.

Sprache
Englisch

Erschienen in
Series: Discussion Papers ; No. 614

Klassifikation
Wirtschaft
Estimation: General
Single Equation Models; Single Variables: Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
Model Construction and Estimation
General Financial Markets: General (includes Measurement and Data)
Thema
multivariate stochastic volatility
exchange rates
Ornstein-Uhlenbeck processes
quasi-likelihood
factor models
state space representation

Ereignis
Geistige Schöpfung
(wer)
Raknerud, Arvid
Skare, Øivind
Ereignis
Veröffentlichung
(wer)
Statistics Norway, Research Department
(wo)
Oslo
(wann)
2010

Handle
Letzte Aktualisierung
10.03.2025, 11:43 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Raknerud, Arvid
  • Skare, Øivind
  • Statistics Norway, Research Department

Entstanden

  • 2010

Ähnliche Objekte (12)