META-LEARNING FOR WETLAND CLASSIFICATION USING A COMBINATION OF SENTINEL-1 AND SENTINEL-2 IMAGERY

Abstract. In wetland mapping, a lot of uncertainty is related to the task of selecting an appropriate classification approach. Although the individual models are available and well-established in the literature for the classification task, the combination approaches have become popular recently. Hence, selecting an appropriate method is challenging, whether an individual approach or combination. In this work, a meta-learning study is performed to prove that combining the result of individual machine learning models could be better than using the best single model. This study investigates the applicability of the meta-learning method for wetland classification. We will first explore the importance of extracted features for each model. Then, the essential features are fed to the model with the well-tuned hyper-parameters. Finally, the voting classifier as a meta-learning approach is adopted to improve the classification result. The classification map of the study area reached the highest accuracy (Overall Accuracy = 93.9% and Kappa = 0.92) when the proposed ensemble classifier was employed. The results show the superiority of a combination of methods over simple model selection approaches. The results of this study can provide new insights for researchers to find new combination strategies to improve the classification results.

Standort
Deutsche Nationalbibliothek Frankfurt am Main
Umfang
Online-Ressource
Sprache
Englisch

Erschienen in
META-LEARNING FOR WETLAND CLASSIFICATION USING A COMBINATION OF SENTINEL-1 AND SENTINEL-2 IMAGERY ; volume:V-3-2022 ; year:2022 ; pages:47-52 ; extent:6
ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences ; V-3-2022 (2022), 47-52 (gesamt 6)

Urheber
Jafarzadeh, H.
Mahdianpari, M.
Gill, E.

DOI
10.5194/isprs-annals-V-3-2022-47-2022
URN
urn:nbn:de:101:1-2022051905184580361417
Rechteinformation
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Letzte Aktualisierung
15.08.2025, 07:25 MESZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Beteiligte

  • Jafarzadeh, H.
  • Mahdianpari, M.
  • Gill, E.

Ähnliche Objekte (12)