Application of back propagation neural networks and random forest algorithms in material research of hydrogels

Abstract: In the fourth paradigm of science, which is data‐driven discovery, the big data collected from the first three paradigms can be analyzed to gain information of the research object. Especially in the field of material science, various big data‐driven methods are applied in the tasks, such as material detection, material analysis and material design. In the current research, we focus on how data‐driven methods, e.g., machine learning algorithms, play a big role in deciphering processing‐properties‐performance (PPP) relationships in hydrogels. We present the procedure of (i) normalization of hydrogel properties, (ii) feature engineering of hydrogels, which is to summarize the decisive features in each PPP section of hydrogels, and (iii) database building by data extraction from scientific literature of hydrogels. Finally, we select the two most promising machine learning algorithms, back propagation neural network and random forest algorithm. The back propagation neural network can contribute to prediction of hydrogels properties and the random forest algorithm can be applied to obtain deeper understanding of hydrogels in the early stage of the research.

Standort
Deutsche Nationalbibliothek Frankfurt am Main
Umfang
Online-Ressource
Sprache
Englisch

Erschienen in
Application of back propagation neural networks and random forest algorithms in material research of hydrogels ; volume:23 ; number:1 ; year:2023 ; extent:6
Proceedings in applied mathematics and mechanics ; 23, Heft 1 (2023) (gesamt 6)

Urheber
Wang, Yawen
Wallmersperger, Thomas
Ehrenhofer, Adrian

DOI
10.1002/pamm.202200278
URN
urn:nbn:de:101:1-2023060115135228512319
Rechteinformation
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Letzte Aktualisierung
14.08.2025, 10:47 MESZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Beteiligte

Ähnliche Objekte (12)