Inverse design in nuclear quantum optics: from artificial x-ray multilevel schemes to spectral observables
Abstract: Ensembles of Mössbauer nuclei embedded in thin-film cavities form a promising platform for x-ray quantum optics. A key feature is that the joint nuclei-cavity system can be considered as an artificial x-ray multilevel scheme in the low-excitation regime. Using the cavity environment, the structure and parameters of such level schemes can be tailored beyond those offered by the bare nuclei. However, so far, the direct determination of a cavity structure providing a desired quantum optical functionality has remained an open challenge. Here we address this challenge using an inverse design methodology. As a first qualitative result, we show that the established fitting approach based on scattering observables in general is not unique, since the analysis may lead to different multilevel systems for the same cavity if based on observables in different scattering channels. Motivated by this, we distinguish between scattering signatures and the microscopic level scheme as separate design objectives, with the latter being uniquely determined by an ab initio approach. We find that both design objectives are of practical relevance and that they complement each other regarding potential applications. We demonstrate the inverse design for both objectives using example tasks, such as realizing electromagnetically induced transparency. Our results pave the way for future applications in nuclear quantum optics involving more complex x-ray cavity designs
- Standort
-
Deutsche Nationalbibliothek Frankfurt am Main
- Umfang
-
Online-Ressource
- Sprache
-
Englisch
- Anmerkungen
-
Physical review. A : covering atomic, molecular, and optical physics and quantum information. - 106, 5 (2022) , 053701, ISSN: 2469-9934
- Ereignis
-
Veröffentlichung
- (wo)
-
Freiburg
- (wer)
-
Universität
- (wann)
-
2023
- Urheber
- Beteiligte Personen und Organisationen
-
Quantum Optics and Statistics
- DOI
-
10.1103/physreva.106.053701
- URN
-
urn:nbn:de:bsz:25-freidok-2326954
- Rechteinformation
-
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
- Letzte Aktualisierung
-
25.03.2025, 13:54 MEZ
Datenpartner
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Beteiligte
- Diekmann, Oliver
- Lentrodt, Dominik
- Evers, Jörg
- Quantum Optics and Statistics
- Universität
Entstanden
- 2023