A posteriori regularization method for the two-dimensional inverse heat conduction problem
Abstract: In this article, we consider a two-dimensional inverse heat conduction problem that determines the surface temperature distribution from measured data at the fixed location. This problem is severely ill-posed, i.e., the solution does not depend continuously on the data. A quasi-boundary value regularization method in conjunction with the a posteriori parameter choice strategy is proposed to solve the problem. A Hölder-type error estimate between the approximate solution and its exact solution is also given. The error estimate shows that the regularized solution is dependent continuously on the data.
- Location
-
Deutsche Nationalbibliothek Frankfurt am Main
- Extent
-
Online-Ressource
- Language
-
Englisch
- Bibliographic citation
-
A posteriori regularization method for the two-dimensional inverse heat conduction problem ; volume:20 ; number:1 ; year:2022 ; pages:1030-1038 ; extent:9
Open mathematics ; 20, Heft 1 (2022), 1030-1038 (gesamt 9)
- Creator
-
Cheng, Wei
Liu, Yi-Liang
Zhao, Qi
- DOI
-
10.1515/math-2022-0489
- URN
-
urn:nbn:de:101:1-2022092414124936172342
- Rights
-
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
- Last update
-
15.08.2025, 7:32 AM CEST
Data provider
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.
Associated
- Cheng, Wei
- Liu, Yi-Liang
- Zhao, Qi