High‐Throughput Approaches to Engineer Fluorescent Nanosensors

Abstract: Optical sensors are powerful tools to identify and image (biological) molecules. Because of their optoelectronic properties, nanomaterials are often used as building blocks. To transduce the chemical interaction with the analyte into an optical signal, the interplay between surface chemistry and nanomaterial photophysics has to be optimized. Understanding these aspects promises major opportunities for tailored sensors with optimal performance. However, this requires methods to create and explore the many chemical permutations. Indeed, many current approaches are limited in throughput. This affects the chemical design space that can be studied, the application of machine learning approaches as well as fundamental mechanistic understanding. Here, an overview of selection‐limited and synthesis‐limited approaches is provided to create and identify molecular nanosensors. Bottlenecks are discussed and opportunities of non‐classical recognition strategies are highlighted such as corona phase molecular recognition as well as the requirements for high throughput and scalability. Fluorescent carbon nanotubes are powerful building blocks for sensors and their huge chemical design space makes them an ideal platform for high throughput approaches. Therefore, they are the focus of this article, but the insights are transferable to any nanosensor system. Overall, this perspective aims to provide a fresh perspective to overcome current challenges in the nanosensor field.

Standort
Deutsche Nationalbibliothek Frankfurt am Main
Umfang
Online-Ressource
Sprache
Englisch

Erschienen in
High‐Throughput Approaches to Engineer Fluorescent Nanosensors ; day:12 ; month:11 ; year:2024 ; extent:17
Advanced materials ; (12.11.2024) (gesamt 17)

Urheber
Metternich, Justus T.
Patjoshi, Sujit K.
Kistwal, Tanuja
Kruss, Sebastian

DOI
10.1002/adma.202411067
URN
urn:nbn:de:101:1-2411131339518.387872516456
Rechteinformation
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Letzte Aktualisierung
15.08.2025, 07:24 MESZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Beteiligte

Ähnliche Objekte (12)