Analyzing and forecasting financial series with singular spectral analysis

Abstract: Modern techniques for managing multidimensional stochastic processes that reflect the dynamics of unstable environments are proactive, which refers to decision making based on forecasting the system’s state vector evolution. At the same time, the dynamics of open nonlinear systems are largely determined by their chaotic nature, which leads to a violation of stationarity and ergodicity of the series of observations and, as a result, to a catastrophic decrease in the efficiency of forecasting algorithms based on traditional methods of multivariate statistical data analysis. In this article, we make an attempt to reduce the instability influence by employing singular spectrum analysis (SSA) algorithms. This technique has been employed in a wide class of applied data analysis problems formulated in terms of singular decomposition of data matrices: technologies of immunocomputing and SSA.

Standort
Deutsche Nationalbibliothek Frankfurt am Main
Umfang
Online-Ressource
Sprache
Englisch

Erschienen in
Analyzing and forecasting financial series with singular spectral analysis ; volume:10 ; number:1 ; year:2022 ; pages:215-224 ; extent:10
Dependence modeling ; 10, Heft 1 (2022), 215-224 (gesamt 10)

Urheber
Makshanov, Andrey
Musaev, Alexander
Grigoriev, Dmitry

DOI
10.1515/demo-2022-0112
URN
urn:nbn:de:101:1-2022072714113601937168
Rechteinformation
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Letzte Aktualisierung
15.08.2025, 07:26 MESZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Beteiligte

  • Makshanov, Andrey
  • Musaev, Alexander
  • Grigoriev, Dmitry

Ähnliche Objekte (12)