Experimental and numerical studies on damage and failure behavior of anisotropic ductile metals

Abstract: The paper deals with experiments and numerical simulations of the biaxially loaded H‐specimen to study the damage and failure in anisotropic ductile metals. The deformation and failure behavior of anisotropic ductile metals depend both on load ratio and loading direction with respect to the rolling direction. Experiments focusing on shear‐compression stress states have been performed and digital image correlation (DIC) is used to monitor the strain fields. Numerical simulations based on the Hill48 anisotropic yield criterion are used to predict the stress states of the investigated anisotropic aluminum alloy EN AW‐2017A. The fractured surfaces are visualized by scanning electron microscopy (SEM). The experimental‐numerical technique clearly shows the influence of loading direction and the stress state on the evolution of damage processes.

Location
Deutsche Nationalbibliothek Frankfurt am Main
Extent
Online-Ressource
Language
Englisch

Bibliographic citation
Experimental and numerical studies on damage and failure behavior of anisotropic ductile metals ; volume:23 ; number:1 ; year:2023 ; extent:6
Proceedings in applied mathematics and mechanics ; 23, Heft 1 (2023) (gesamt 6)

Creator
Koirala, Sanjeev
Gerke, Steffen
Brünig, Michael

DOI
10.1002/pamm.202200013
URN
urn:nbn:de:101:1-2023060115194270597198
Rights
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Last update
14.08.2025, 10:50 AM CEST

Data provider

This object is provided by:
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.

Associated

Other Objects (12)