Artikel

Comparison of improved relevance vector machines for streamflow predictions

This study investigates the feasibility of relevance vector machine tuned with dwarf mongoose optimization algorithm in modeling monthly streamflow. The proposed method is compared with relevance vector machines tuned by particle swarm optimization, whale optimization, marine predators algorithms, and single relevance vector machine methods. Various lagged values of hydroclimatic data (e.g., precipitation, temperature, and streamflow) are used as inputs to the models. The relevance vector machine tuned with dwarf mongoose optimization algorithm improved the efficiency of single method in monthly streamflow prediction. It is found that the integrating metaheuristic algorithms into single relevance vector machine improves the prediction efficiency, and among the input combinations, the lagged streamflow data are found to be the most effective variable on current streamflow whereas precipitation has the least effect.

Sprache
Englisch

Erschienen in
Journal: Journal of Forecasting ; ISSN: 1099-131X ; Volume: 43 ; Year: 2023 ; Issue: 1 ; Pages: 159-181 ; Hoboken, NJ: Wiley

Thema
dwarf mongoose optimization algorithm
hydroclimatic data
relevance vector machine
streamflow prediction

Ereignis
Geistige Schöpfung
(wer)
Adnan, Rana Muhammad
Mostafa, Reham R.
Dai, Hong‐Liang
Mansouri, Ehsan
Kisi, Ozgur
Zounemat‐Kermani, Mohammad
Ereignis
Veröffentlichung
(wer)
Wiley
(wo)
Hoboken, NJ
(wann)
2023

DOI
doi:10.1002/for.3028
Letzte Aktualisierung
10.03.2025, 11:46 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Artikel

Beteiligte

  • Adnan, Rana Muhammad
  • Mostafa, Reham R.
  • Dai, Hong‐Liang
  • Mansouri, Ehsan
  • Kisi, Ozgur
  • Zounemat‐Kermani, Mohammad
  • Wiley

Entstanden

  • 2023

Ähnliche Objekte (12)