Gold‐Catalyzed 1,2‐Aryl Shift and Double Alkyne Benzannulation

Abstract: The tandem intramolecular hydroarylation of alkynes accompanied by a 1,2‐aryl shift is described. Harnessing the unique electron‐rich character of 1,4‐dihydropyrrolo[3,2‐b]pyrrole scaffold, we demonstrate that the hydroarylation of alkynes proceeds at the already occupied positions 2 and 5 leading to a 1,2‐aryl shift. Remarkably, the reaction proceeds only in the presence of cationic gold catalyst, and it leads to heretofore unknown π‐expanded, centrosymmetric pyrrolo[3,2‐b]pyrroles. The utility is verified in the preparation of 13 products that bear six conjugated rings. The observed compatibility with various functional groups allows for increased tunability with regard to the photophysical properties as well as providing sites for further functionalization. Computational studies of the reaction mechanism revealed that the formation of the six‐membered rings accompanied with a 1,2‐aryl shift is both kinetically and thermodynamically favourable over plausible formation of products containing 7‐membered rings. Steady‐state UV/Visible spectroscopy reveals that upon photoexcitation, the prepared S‐shaped N‐doped nanographenes undergo mostly radiative relaxation leading to large fluorescence quantum yields. Their optical properties are rationalized through time‐dependent density functional theory calculations. We anticipate that this chemistry will empower the creation of new materials with various functionalities.

Location
Deutsche Nationalbibliothek Frankfurt am Main
Extent
Online-Ressource
Language
Englisch

Bibliographic citation
Gold‐Catalyzed 1,2‐Aryl Shift and Double Alkyne Benzannulation ; day:02 ; month:11 ; year:2023 ; extent:10
Angewandte Chemie ; (02.11.2023) (gesamt 10)

Creator
Sanil, Gana
Krzeszewski, Maciej
Chaładaj, Wojciech
Danikiewicz, Witold
Knysh, Iryna
Dobrzycki, Lukasz
Staszewska‐Krajewska, Olga
Cyrański, Michał K.
Jacquemin, Denis
Gryko, Daniel

DOI
10.1002/ange.202311123
URN
urn:nbn:de:101:1-2023110214163215089669
Rights
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Last update
14.08.2025, 10:59 AM CEST

Data provider

This object is provided by:
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.

Associated

Other Objects (12)