Cavity enhanced Raman spectroscopy for food chain management

Abstract: Comprehensive food chain management requires the monitoring of many parameters including temperature, humidity, and multiple gases. The latter is highly challenging because no low-cost technology for the simultaneous chemical analysis of multiple gaseous components currently exists. This contribution proposes the use of cavity enhanced Raman spectroscopy to enable online monitoring of all relevant components using a single laser source. A laboratory scale setup is presented and characterized in detail. Power enhancement of the pump light is achieved in an optical resonator with a Finesse exceeding 2500. A simulation for the light scattering behavior shows the influence of polarization on the spatial distribution of the Raman scattered light. The setup is also used to measure three relevant showcase gases to demonstrate the feasibility of the approach, including carbon dioxide, oxygen and ethene

Location
Deutsche Nationalbibliothek Frankfurt am Main
Extent
Online-Ressource
Language
Englisch
Notes
Sensors. 18, 3 (2018), 709, DOI 10.3390/s18030709, issn: 1424-8220

Classification
Physik
Keyword
Raman-Spektroskopie
Hohlraumresonator
Optischer Resonator
Ethylen

Event
Veröffentlichung
(where)
Freiburg
(who)
Universität
(when)
2018
Creator
Contributor

DOI
10.3390/s18030709
URN
urn:nbn:de:bsz:25-freidok-150990
Rights
Kein Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Last update
25.03.2025, 1:44 PM CET

Data provider

This object is provided by:
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.

Associated

Time of origin

  • 2018

Other Objects (12)