Synthesis of High Entropy Alloy Nanoparticles by Pulsed Laser Ablation in Liquids: Influence of Target Preparation on Stoichiometry and Productivity

Abstract: High entropy alloys (HEAs) have a wide range of applications across various fields, including structural engineering, biomedical science, catalysis, magnetism, and nuclear technology. Nanoscale HEA particles show promising catalytic properties. Nevertheless, attaining versatile composition control in nanoparticles poses a persistent challenge. This study proposes the use of pulsed laser ablation in liquids (PLAL) for synthesizing nanoparticles using equiatomic CoCrFeMnNi targets with varied preparation methods. We evaluate the impact of target preparation method on nanoparticle yield and composition as well as the magnetic properties of the nanoparticles. The elemental powder‐pressed heat‐treated target (HEA‐PP), identified as the most time‐efficient and cost‐effective, exhibits noticeable segregation and non‐uniform elemental distribution compared to ball milled hot‐pressed powder (HEA‐BP) and face‐centered cubic (FCC) single crystal (HEA‐SX) alloy targets. From all targets, nanoparticles (sizes from 2 to 120 nm) can be produced in ethanol with a nearly equiatomic CoCrFeMnNi composition and a FCC structure, showing oxidation of up to 20 at.%. Nanoparticles from HEA‐PP exist in a solid solution state, while those from HEA‐BP and HEA‐SX form core‐shell structures with a Mn shell due to inhomogeneous material expulsion, confirmed by mass spectrometry. HEA‐PP PLAL synthesis demonstrates 6.8 % and 15.1 % higher productivity compared to HEA‐BP and HEA‐SX, establishing PLAL of elemental powder‐pressed targets as a reliable, time‐efficient, and cost‐effective method for generating solid solution HEA nanoparticles.

Location
Deutsche Nationalbibliothek Frankfurt am Main
Extent
Online-Ressource
Language
Englisch

Bibliographic citation
Synthesis of High Entropy Alloy Nanoparticles by Pulsed Laser Ablation in Liquids: Influence of Target Preparation on Stoichiometry and Productivity ; day:26 ; month:03 ; year:2024 ; extent:15
ChemNanoMat ; (26.03.2024) (gesamt 15)

Creator
Tahir, Shabbir
Shkodich, Natalia
Eggert, Benedikt
Lill, Johanna
Gatsa, Oleksandr
Flimelová, Miroslava
Adabifiroozjaei, Esmaeil
Bulgakova, Nadezhda M.
Molina-Luna, Leopoldo
Wende, Heiko
Farle, Michael
Bulgakov, Alexander V.
Doñate-Buendía, Carlos
Gökce, Bilal

DOI
10.1002/cnma.202400064
URN
urn:nbn:de:101:1-2024032713044471467642
Rights
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Last update
14.08.2025, 10:51 AM CEST

Data provider

This object is provided by:
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.

Associated

Other Objects (12)