Arbeitspapier
Spurious precision in meta-analysis
Meta-analysis upweights studies reporting lower standard errors and hence more precision. But in empirical practice, notably in observational research, precision is not given to the researcher. Precision must be estimated, and thus can be p-hacked to achieve statistical significance. Simulations show that a modest dose of spurious precision creates a formidable problem for inverse-variance weighting and bias-correction methods based on the funnel plot. Selection models fail to solve the problem, and the simple mean can beat sophisticated estimators. Cures to publication bias may become worse than the disease. We introduce an approach that surmounts spuriousness: the Meta-Analysis Instrumental Variable Estimator (MAIVE), which employs inverse sample size as an instrument for reported variance.
- Sprache
-
Englisch
- Erschienen in
-
Series: IES Working Paper ; No. 5/2023
- Klassifikation
-
Wirtschaft
Statistical Simulation Methods: General
Single Equation Models: Single Variables: Instrumental Variables (IV) Estimation
Survey Methods; Sampling Methods
- Thema
-
Publication bias
p-hacking
selection models
meta-regression
funnel plot
inverse-variance weighting
- Ereignis
-
Geistige Schöpfung
- (wer)
-
Havránková, Zuzana
Bom, Pedro R. D.
Havránek, Tomáš
Rachinger, Heiko
- Ereignis
-
Veröffentlichung
- (wer)
-
Charles University in Prague, Institute of Economic Studies (IES)
- (wo)
-
Prague
- (wann)
-
2023
- Handle
- Letzte Aktualisierung
-
10.03.2025, 11:44 MEZ
Datenpartner
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Objekttyp
- Arbeitspapier
Beteiligte
- Havránková, Zuzana
- Bom, Pedro R. D.
- Havránek, Tomáš
- Rachinger, Heiko
- Charles University in Prague, Institute of Economic Studies (IES)
Entstanden
- 2023