Arbeitspapier

Daily news sentiment and monthly surveys: A mixed-frequency dynamic factor model for nowcasting consumer confidence

Policymakers, firms, and investors closely monitor traditional survey-based consumer confidence indicators and treat it as an important piece of economic information. We propose a latent factor model for the vector of monthly survey-based consumer confidence and daily sentiment embedded in economic media news articles. The proposed mixed-frequency dynamic factor model framework uses a novel covariance matrix specification. Model estimation and real-time filtering of the latent consumer confidence index are computationally simple. In a Monte Carlo simulation study and an empirical application concerning Belgian consumer confidence, we document the economically significant accuracy gains obtained by including daily news sentiment in the dynamic factor model for nowcasting consumer confidence.

Sprache
Englisch

Erschienen in
Series: NBB Working Paper ; No. 396

Klassifikation
Wirtschaft
Multiple or Simultaneous Equation Models: Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
Model Construction and Estimation
Forecasting Models; Simulation Methods
Large Data Sets: Modeling and Analysis
Thema
dynamic factor model
mixed-frequency
nowcasting
sentiment index
sentometrics
state space

Ereignis
Geistige Schöpfung
(wer)
Algaba, Andres
Borms, Samuel
Boudt, Kris
Verbeken, Brecht
Ereignis
Veröffentlichung
(wer)
National Bank of Belgium
(wo)
Brussels
(wann)
2021

Handle
Letzte Aktualisierung
10.03.2025, 11:42 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Algaba, Andres
  • Borms, Samuel
  • Boudt, Kris
  • Verbeken, Brecht
  • National Bank of Belgium

Entstanden

  • 2021

Ähnliche Objekte (12)