Nonvolatile Electrochemical Random‐Access Memory under Short Circuit

Abstract: Electrochemical random‐access memory (ECRAM) is a recently developed and highly promising analog resistive memory element for in‐memory computing. One longstanding challenge of ECRAM is attaining retention time beyond a few hours. This short retention has precluded ECRAM from being considered for inference classification in deep neural networks, which is likely the largest opportunity for in‐memory computing. In this work, an ECRAM cell with orders of magnitude longer retention than previously achieved is developed, and which is anticipated to exceed ten years at 85 °C. This study hypothesizes that the origin of this exceptional retention is phase separation, which enables the formation of multiple effectively equilibrium resistance states. This work highlights the promises and opportunities to use phase separation to yield ECRAM cells with exceptionally long, and potentially permanent, retention times.

Location
Deutsche Nationalbibliothek Frankfurt am Main
Extent
Online-Ressource
Language
Englisch

Bibliographic citation
Nonvolatile Electrochemical Random‐Access Memory under Short Circuit ; day:15 ; month:11 ; year:2022 ; extent:8
Advanced electronic materials ; (15.11.2022) (gesamt 8)

Creator
Kim, Diana S.
Watkins, Virgil J.
Cline, Laszlo A.
Li, Jingxian
Sun, Kai
Sugar, Joshua D.
Fuller, Elliot J.
Talin, A. Alec
Li, Yiyang

DOI
10.1002/aelm.202200958
URN
urn:nbn:de:101:1-2022111514174000666992
Rights
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Last update
15.08.2025, 7:37 AM CEST

Data provider

This object is provided by:
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.

Associated

  • Kim, Diana S.
  • Watkins, Virgil J.
  • Cline, Laszlo A.
  • Li, Jingxian
  • Sun, Kai
  • Sugar, Joshua D.
  • Fuller, Elliot J.
  • Talin, A. Alec
  • Li, Yiyang

Other Objects (12)