TRIPOD - a treadmill walking dataset with IMU, pressure-distribution and photoelectric data for gait analysis

Abstract: Inertial measurement units (IMUs) enable easy to operate and low-cost data recording for gait analysis. When combined with treadmill walking, a large number of steps can be collected in a controlled environment without the need of a dedicated gait analysis laboratory. In order to evaluate existing and novel IMU-based gait analysis algorithms for treadmill walking, a reference dataset that includes IMU data as well as reliable ground truth measurements for multiple participants and walking speeds is needed. This article provides a reference dataset consisting of 15 healthy young adults who walked on a treadmill at three different speeds. Data were acquired using seven IMUs placed on the lower body, two different reference systems (Zebris FDMT-HQ and OptoGait), and two RGB cameras. Additionally, in order to validate an existing IMU-based gait analysis algorithm using the dataset, an adaptable modular data analysis pipeline was built. Our results show agreement between the pressure-sensitive Zebris and the photoelectric OptoGait system (r = 0.99), demonstrating the quality of our reference data. As a use case, the performance of an algorithm originally designed for overground walking was tested on treadmill data using the data pipeline. The accuracy of stride length and stride time estimations was comparable to that reported in other studies with overground data, indicating that the algorithm is equally applicable to treadmill data. The Python source code of the data pipeline is publicly available, and the dataset will be provided by the authors upon request, enabling future evaluations of IMU gait analysis algorithms without the need of recording new data

Standort
Deutsche Nationalbibliothek Frankfurt am Main
Umfang
Online-Ressource
Sprache
Englisch
Anmerkungen
ISSN: 2306-5729

Ereignis
Veröffentlichung
(wo)
Freiburg
(wer)
Universität
(wann)
2023
Urheber
Trautmann, Justin
Zhou, Lin
Brahms, Clemens Markus
Tunca, Can
Ersoy, Cem
Granacher, Urs
Arnrich, Bert

DOI
10.3390/data6090095
URN
urn:nbn:de:bsz:25-freidok-2397590
Rechteinformation
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Letzte Aktualisierung
25.03.2025, 13:48 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Beteiligte

  • Trautmann, Justin
  • Zhou, Lin
  • Brahms, Clemens Markus
  • Tunca, Can
  • Ersoy, Cem
  • Granacher, Urs
  • Arnrich, Bert
  • Universität

Entstanden

  • 2023

Ähnliche Objekte (12)